论文标题
重新分析$^{13} $ n($ p,γ$)$^{14} $ o反应及其在恒星CNO周期中的作用
Reanalysis of $^{13}$N($p,γ$)$^{14}$O reaction and its role in stellar CNO cycle
论文作者
论文摘要
在使用禁止状态的修改后潜在群集模型的框架内,考虑了$^{13} $ n($ p,γ$)$^{14} $ o反应速率和天体物理$ s $ factor。结果表明,第一个$ p^{13} $%n共振确定$ s $ factor和$ m1 $和$ e2 $ trantions的贡献在energies $ e <1 $ mev中可以忽略不计,但在高能量上是显着的。 $ s $ -factor在很大程度上取决于$^{3} s_ {1} $ resonance参数。 \ s $ s $%factor的$^{3} s_ {1} $共振的宽度的影响已被演示。计算反应速率,并提出了反应速率的分析近似。解决了我们的计算与现有数据的比较。我们对$^{13} $ n($ p,γ)^{14} $反应率的计算结果为稳步改善反应率数据库库提供了贡献。我们计算$%^{13} $ n($ p,γ)^{14} $ o反应速率以及$^{14} $ n($%p,γ)^{15} $ o和$^{12} $ and $^{12} $ c $(p,γ)^$ $ n processes $ 0.13 <t_的结果的结果。 CNO循环至HCNO循环。我们的结果表明,在温度下发生新星爆炸的早期阶段,大约$ $ $ $ $ t_ {9} $,而在温度下,超级恒星的演变后期大约$ $ $ $ $ $ $ t_ {9} $,在恒定较低的较低浓度下可能会发生HCNO周期的点火。
Within the framework of the modified potential cluster model with forbidden states, the $^{13}$N($p,γ$)$^{14}$O reaction rate and the astrophysical $S$-factor are considered. It is shown that the first $p^{13}$% N resonance determines the $S$-factor and contributions of the $M1$ and $E2$ transitions are negligible at energies $E<1$ MeV, but are significant at high energies. The $S$-factor strongly depends on the $^{3}S_{1}$ resonance parameters. The influence of the width of \ the $^{3}S_{1}$ resonance on $S$% -factor is demonstrated. The reaction rate is calculated and an analytical approximation for the reaction rate is proposed. A comparison of our calculation with existing data is addressed. Results of our calculations for the $^{13}$N($p,γ)^{14}$O reaction rate provide the contribution to the steadily improving reaction rate database libraries. Our calculations of the $% ^{13}$N($p,γ)^{14}$O reaction rate along with results for the rates of $^{14}$N($% p,γ)^{15}$O and $^{12}$C$(p,γ)^{13}$N processes provide the temperature range $0.13<T_{9}<0.97$ for the conversion of CNO cycle to the HCNO cycle. Our results demonstrate that at early stages of a nova explosion at temperatures about $0.1$ $T_{9}$ and at late stages of evolution of supermassive stars at temperatures about $1.0$ $T_{9}$ the ignition of the HCNO cycle could occur at much lower densities of a stellar medium.