论文标题

复杂双曲线二次的拉格朗日亚曼叶

Lagrangian submanifolds of the complex hyperbolic quadric

论文作者

Van der Veken, Joeri, Wijffels, Anne

论文摘要

我们将复杂的双曲线二次$ {q^*}^n $视为复杂的抗DE保姆空间的复杂性超脸。该子手机的形状操作员在$ {q^*}^n $上产生了一个本地几乎产品结构的家族,然后将其用于在任何$ {q^*}^n $的Lagrangian Submanifold上定义局部角度函数。我们证明,拉格朗日浸入$ {q^*}^n $中可以看作是(真实)抗DE安静的空间的高空表情的高斯图,并将角度函数与此hypersurface的主要曲率相关联。我们还提供了一个公式,该公式将拉格朗日浸入这些主要曲率的平均曲率有关。这些定理用几个抗DE保姆空间及其高斯图的空隙性突出的示例进行了说明。最后,我们对一些$ {q^*}^n $的Lagrangian Submanifolds的一些家庭分类为:那些具有平行第二基本形式的家族,而诱导的截面曲率是恒定的。在这两种情况下,拉格朗日亚曼菲德都被迫完全大地测量。

We consider the complex hyperbolic quadric ${Q^*}^n$ as a complex hypersurface of complex anti-de Sitter space. Shape operators of this submanifold give rise to a family of local almost product structures on ${Q^*}^n$, which are then used to define local angle functions on any Lagrangian submanifold of ${Q^*}^n$. We prove that a Lagrangian immersion into ${Q^*}^n$ can be seen as the Gauss map of a spacelike hypersurface of (real) anti-de Sitter space and relate the angle functions to the principal curvatures of this hypersurface. We also give a formula relating the mean curvature of the Lagrangian immersion to these principal curvatures. The theorems are illustrated with several examples of spacelike hypersurfaces of anti-de Sitter space and their Gauss maps. Finally, we classify some families of minimal Lagrangian submanifolds of ${Q^*}^n$: those with parallel second fundamental form and those for which the induced sectional curvature is constant. In both cases, the Lagrangian submanifold is forced to be totally geodesic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源