论文标题

从球形鸡到复杂网络的临界点

From spherical chicken to the tipping points of a complex network

论文作者

Shi, Gui-Yuan, Wu, Rui-Jie, Kong, Yi-Xiu, Sneppen, Kim

论文摘要

流行病的爆发,金融危机的出现,生态系统的崩溃以及谣言的爆炸性传播,我们在当今世界面临许多挑战。在日益压力的环境中,这些现实世界中的问题可以抽象成复杂系统的顺序分解。由于系统和环境都需要大量参数以描述,因此很难估计分解条件。我们使用高度对称的系统来评估一个复杂的环境,这使我们能够提出标量基准来描述环境。这使我们可以证明复杂网络的所有临界点均介于网络的最大k核和最大特征值之间。

The outbreak of epidemics, the emergence of the financial crisis, the collapse of ecosystem, and the explosive spreading of rumors, we face many challenges in today's world. These real-world problems can be abstracted into a sequential break down of a complex system in an increasingly stressful environment. Because both the system and the environment require a large number of parameters to describe, the break down conditions has been difficult to estimate. We use a highly symmetric system to gauge a complex environment, which enables us to propose a scalar benchmark to describe the environment. This allows us to prove that all the tipping points of a complex network fall between the maximum k-core and maximum eigenvalue of the network.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源