论文标题

舒适的基于VR的触觉的人类感知优化的计划

Human Perception-Optimized Planning for Comfortable VR-Based Telepresence

论文作者

Becerra, Israel, Suomalainen, Markku, Lozano, Eliezer, Mimnaugh, Katherine J., Murrieta-Cid, Rafael, LaValle, Steven M.

论文摘要

本文考虑了一个沉浸在远程机器人的观察角度的人,从而引入了新兴的运动计划问题。面临的挑战是使体验既有效(例如提供存在感)和舒适(例如避免恶心的疾病症状,包括恶心)。我们将这个具有挑战性的新领域称为人类感知优化的计划,并提出了一个一般的多目标优化框架,可以在许多设想的情况下进行实例化。然后,我们将特定的VR关注任务视为人类感知优化计划的情况,在该计划中,我们模拟了一个机器人,该机器人将360个视频发送给远程用户,以通过头部安装的显示。在这项特定的任务中,我们计划最大程度地减少VR疾病的轨迹(从而最大程度地提高舒适性)。 A*类型方法用于创建分段线性轨迹的帕累托最佳集合,同时考虑到改善舒适性的标准。我们对游览虚拟博物馆的人类受试者进行了一项研究,在该博物馆中,我们的算法计算的路径与基于参考RRT的轨迹进行了比较。通常,用户患有VR病的苦难较少,并且更喜欢由提出的算法创建的路径。

This paper introduces an emerging motion planning problem by considering a human that is immersed into the viewing perspective of a remote robot. The challenge is to make the experience both effective (such as delivering a sense of presence) and comfortable (such as avoiding adverse sickness symptoms, including nausea). We refer to this challenging new area as human perception-optimized planning and propose a general multiobjective optimization framework that can be instantiated in many envisioned scenarios. We then consider a specific VR telepresence task as a case of human perception-optimized planning, in which we simulate a robot that sends 360 video to a remote user to be viewed through a head-mounted display. In this particular task, we plan trajectories that minimize VR sickness (and thereby maximize comfort). An A* type method is used to create a Pareto-optimal collection of piecewise linear trajectories while taking into account criteria that improve comfort. We conducted a study with human subjects touring a virtual museum, in which paths computed by our algorithm are compared against a reference RRT-based trajectory. Generally, users suffered less from VR sickness and preferred the paths created by the presented algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源