论文标题

在微电子学中应用的模拟和缺陷预测的深度学习框架

A Deep Learning Framework for Simulation and Defect Prediction Applied in Microelectronics

论文作者

Dimitriou, Nikolaos, Leontaris, Lampros, Vafeiadis, Thanasis, Ioannidis, Dimosthenis, Wotherspoon, Tracy, Tinker, Gregory, Tzovaras, Dimitrios

论文摘要

在工业流程中即将发生的事件的预测一直是一个长期的研究目标,因为它可以优化制造参数,设备维护的计划以及更重要的预测以及最终预防缺陷。尽管现有方法取得了实质性进展,但它们主要限于处理一维信号或需要参数调整以建模环境参数。在本文中,我们提出了一种基于深神经网络的替代方法,该方法基于先前的3D测量值模拟了批处理中监视对象的3D结构的变化。特别是,我们提出了一个基于3D卷积神经网络(3DCNN)的体系结构,以模拟制造参数的几何变化并预测与亚最佳性能有关的即将发生的事件。我们使用最近发表的PCB扫描数据集验证了微电子用例上的框架,在该数据集附着在集成电路(IC)的附着之前,我们会模拟沉积在液晶聚合物(LCP)底物上的胶的形状和体积的变化。实验评估检查了训练过程中不同选择在成本函数中的影响,并表明该方法可以有效地用于缺陷预测。

The prediction of upcoming events in industrial processes has been a long-standing research goal since it enables optimization of manufacturing parameters, planning of equipment maintenance and more importantly prediction and eventually prevention of defects. While existing approaches have accomplished substantial progress, they are mostly limited to processing of one dimensional signals or require parameter tuning to model environmental parameters. In this paper, we propose an alternative approach based on deep neural networks that simulates changes in the 3D structure of a monitored object in a batch based on previous 3D measurements. In particular, we propose an architecture based on 3D Convolutional Neural Networks (3DCNN) in order to model the geometric variations in manufacturing parameters and predict upcoming events related to sub-optimal performance. We validate our framework on a microelectronics use-case using the recently published PCB scans dataset where we simulate changes on the shape and volume of glue deposited on an Liquid Crystal Polymer (LCP) substrate before the attachment of integrated circuits (IC). Experimental evaluation examines the impact of different choices in the cost function during training and shows that the proposed method can be efficiently used for defect prediction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源