论文标题
迁移网络:网络分析到宏观迁移模式的应用
Migration Networks: Applications of Network Analysis to Macroscale Migration Patterns
论文作者
论文摘要
研究的一个新兴领域是将宏观迁移模式作为一个代表位置(例如国家,城市和农村地区)的节点网络的研究以及编码连接这些地方的迁移联系的边缘。在本章中,我们首先回顾了迁移网络研究的进步以及已采用网络分析的最新工作来检查不同地理量表的此类网络。在我们的讨论中,我们特别关注全球规模迁移网络。然后,我们提出了与数字技术和在线地理分配数据共同利用网络分析的方法,以检查迁移网络的结构和动态。研究迁移网络的这种方法的实施面临许多挑战,包括道德,方法论学,社会技术方法(例如,数据可用性和再利用)以及研究可重复性。我们详细介绍了这些挑战,然后我们考虑将数字地理数据与管理和调查数据联系起来的可能方法,以利用新技术来构建越来越现实的迁移网络(例如,使用多重网络)。我们还简要讨论了网络分析和相邻领域(例如机器学习)中的新方法(例如,多层网络分析),这些方法可以帮助提高对宏观迁移宏观迁移模式的理解。
An emerging area of research is the study of macroscale migration patterns as a network of nodes that represent places (e.g., countries, cities, and rural areas) and edges that encode migration ties that connect those places. In this chapter, we first review advances in the study of migration networks and recent work that has employed network analysis to examine such networks at different geographical scales. In our discussion, we focus in particular on global scale migration networks. We then propose ways to leverage network analysis in concert with digital technologies and online geolocated data to examine the structure and dynamics of migration networks. The implementation of such approaches for studying migration networks faces many challenges, including ethical ones, methodological ones, socio-technological ones (e.g., data availability and reuse), and research reproducibility. We detail these challenges, and we then consider possible ways of linking digital geolocated data to administrative and survey data as a way of harnessing new technologies to construct increasingly realistic migration networks (e.g., using multiplex networks). We also briefly discuss new methods (e.g., multilayer network analysis) in network analysis and adjacent fields (e.g., machine learning) that can help advance understanding of macroscale patterns of migration.