论文标题

扰动量子场理论和同型代数

Perturbative Quantum Field Theory and Homotopy Algebras

论文作者

Jurco, Branislav, Kim, Hyungrok, Macrelli, Tommaso, Saemann, Christian, Wolf, Martin

论文摘要

我们回顾了有关扰动量子场理论的同质代数观点:经典字段理论对应于同型代数,例如$ a_ \ infty $ - 和$ l_ \ l_ \ infty $ -Algebras。此外,它们的散射幅度在树级的这些同质代数的最小模型及其量子级别的量子亲戚的最小模型中编码。 Lagrangian田野理论与同型代数之间的翻译由Batalin-Vilkovisky形式主义提供。最小模型是使用同源扰动引理递归计算的,该引理诱导有用的递归关系以计算散射振幅的计算。在解释了同源扰动引理如何产生通常的Feynman图扩展之后,我们使用我们的技术来验证Berends的身份 - 暗示着kleiss-kuijf关系的吉利电流。

We review the homotopy algebraic perspective on perturbative quantum field theory: classical field theories correspond to homotopy algebras such as $A_\infty$- and $L_\infty$-algebras. Furthermore, their scattering amplitudes are encoded in minimal models of these homotopy algebras at tree level and their quantum relatives at loop level. The translation between Lagrangian field theories and homotopy algebras is provided by the Batalin--Vilkovisky formalism. The minimal models are computed recursively using the homological perturbation lemma, which induces useful recursion relations for the computation of scattering amplitudes. After explaining how the homological perturbation lemma produces the usual Feynman diagram expansion, we use our techniques to verify an identity for the Berends--Giele currents which implies the Kleiss--Kuijf relations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源