论文标题

光场摄影的样式转移

Style Transfer for Light Field Photography

论文作者

Hart, David, Greenland, Jessica, Morse, Bryan

论文摘要

随着光场图像的使用和应用不断增加,有必要将现有图像处理方法调整为这种独特的摄影形式。在本文中,我们探讨了将神经样式转移应用于光场图像的方法。馈送方式转移网络可为单眼图像提供快速,高质量的结果,但是对于完整的光场图像,没有此类网络。由于这些图像的大小,当前的光场数据集很小,不足以从头开始训练纯粹的馈送样式转移网络。因此,有必要以一种允许光场每个视图的风格的方式来调整现有的单眼样式转移网络,同时保持视图之间的视觉一致性。取而代之的是,所提出的方法将通过网络的损失进行了反向放置,并且该过程被迭代以优化(本质上是过拟合)单独的单个光场图像所得的样式化。该网络体系结构允许合并预先训练的快速单眼式定型网络,同时避免需要大型光场训练集。

As light field images continue to increase in use and application, it becomes necessary to adapt existing image processing methods to this unique form of photography. In this paper we explore methods for applying neural style transfer to light field images. Feed-forward style transfer networks provide fast, high-quality results for monocular images, but no such networks exist for full light field images. Because of the size of these images, current light field data sets are small and are insufficient for training purely feed-forward style-transfer networks from scratch. Thus, it is necessary to adapt existing monocular style transfer networks in a way that allows for the stylization of each view of the light field while maintaining visual consistencies between views. Instead, the proposed method backpropagates the loss through the network, and the process is iterated to optimize (essentially overfit) the resulting stylization for a single light field image alone. The network architecture allows for the incorporation of pre-trained fast monocular stylization networks while avoiding the need for a large light field training set.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源