论文标题

光谱通过界定独立采样

Spectral Sparsification via Bounded-Independence Sampling

论文作者

Doron, Dean, Murtagh, Jack, Vadhan, Salil, Zuckerman, David

论文摘要

我们给出了一种确定性的,几乎对数空间算法,用于对无向图的轻度光谱稀疏。给定$ n $顶点上的加权,无方向的图$ g $,由长度$ n $的二进制字符串,整数$ k \ leq \ log n $和错误参数$ε> 0 $,我们的算法在太空中运行$ \ tilde {o} w _ {\ mathrm {max}}/w _ {\ mathrm {min}}))$其中$ w _ {\ mathrm {max}} $和$ w _ {\ mathrm {minrm {min}} $是$ g $的最大和最小优势,以及$ g $的最大优势,$ $ $ $ $ $ $ $ $ h。 $ \ tilde {o}(n^{1+2/k}/ε^2)$边缘在Spielmen和Teng [ST04]的意义上,频谱近似于$ g $,最大为$ε$。 我们的算法基于Spielman和Srivastava的有效基于抗性的边缘采样算法的新界独立分析[SS08],并使用了最新作品的laplacian Solvers的结果[MRSV17]。特别是,我们在边缘采样算法中使用的(有限)独立性的数量(通过上方和下限)表示了固有的权衡(通过上限和下限),该算法用上方的$ k $表示,以及可以实现的稀疏性。

We give a deterministic, nearly logarithmic-space algorithm for mild spectral sparsification of undirected graphs. Given a weighted, undirected graph $G$ on $n$ vertices described by a binary string of length $N$, an integer $k\leq \log n$, and an error parameter $ε> 0$, our algorithm runs in space $\tilde{O}(k\log (N\cdot w_{\mathrm{max}}/w_{\mathrm{min}}))$ where $w_{\mathrm{max}}$ and $w_{\mathrm{min}}$ are the maximum and minimum edge weights in $G$, and produces a weighted graph $H$ with $\tilde{O}(n^{1+2/k}/ε^2)$ edges that spectrally approximates $G$, in the sense of Spielmen and Teng [ST04], up to an error of $ε$. Our algorithm is based on a new bounded-independence analysis of Spielman and Srivastava's effective resistance based edge sampling algorithm [SS08] and uses results from recent work on space-bounded Laplacian solvers [MRSV17]. In particular, we demonstrate an inherent tradeoff (via upper and lower bounds) between the amount of (bounded) independence used in the edge sampling algorithm, denoted by $k$ above, and the resulting sparsity that can be achieved.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源