论文标题
宽sense 2框架代码
Wide-Sense 2-Frameproof Codes
论文作者
论文摘要
对各种指纹代码及其相关的组合结构进行了广泛的研究,以保护受版权保护的材料。本文集中于一个专门的指纹代码,称为宽框架框架代码,以防止无辜的用户被构造。让$ Q $是尺寸$ Q $的有限字母。给定A $ t $ -subset $ x = \ {x^1,\ ldots,x^t \} \ subseteq q^n $,如果$ x $匹配的$ x $匹配的$ x $ position $ x $的位置$ x $的位置$ i $可被称为$ x $的位置:$ i $ i $ th位置:$ x_i^1 = \ cdots = \ cdots = \ cdots = x_i^t $。 $ x $的宽宽后裔集由$ \ wdesc(x)= \ {y \ in q^n:y_i = x_i^1,i \ in {u}(x)\},$ {u}(x)$是$ x $的$ {u}(x)$。代码$ {\ cal c} \ subseteq q^n $称为宽sense $ t $ -frameproof代码,如果$ \ wdesc(x)\ cap {\ cap {\ cal c} = x $ for ahl $ x \ subseteq {\ cal c} \ le t $。该论文通过对非$ 2 $覆盖的sperner家族的技术应用技术以及在极端设定理论中相交的家族的技术来改善宽态$ 2 $ frameprame frameprame代码的上限。
Various kinds of fingerprinting codes and their related combinatorial structures are extensively studied for protecting copyrighted materials. This paper concentrates on one specialised fingerprinting code named wide-sense frameproof codes in order to prevent innocent users from being framed. Let $Q$ be a finite alphabet of size $q$. Given a $t$-subset $X=\{x ^1,\ldots, x ^t\}\subseteq Q^n$, a position $i$ is called undetectable for $X$ if the values of the words of $X$ match in their $i$th position: $x_i^1=\cdots=x_i^t$. The wide-sense descendant set of $X$ is defined by $\wdesc(X)=\{y\in Q^n:y_i=x_i^1,i\in {U}(X)\},$ where ${U}(X)$ is the set of undetectable positions for $X$. A code ${\cal C}\subseteq Q^n$ is called a wide-sense $t$-frameproof code if $\wdesc(X) \cap{\cal C} = X$ for all $X \subseteq {\cal C}$ with $|X| \le t$. The paper improves the upper bounds on the sizes of wide-sense $2$-frameproof codes by applying techniques on non $2$-covering Sperner families and intersecting families in extremal set theory.