论文标题

可控后代脸部合成

Controllable Descendant Face Synthesis

论文作者

Zhang, Yong, Li, Le, Liu, Zhilei, Wu, Baoyuan, Fan, Yanbo, Li, Zhifeng

论文摘要

亲属脸综合是一个有趣的话题,它回答了“您的未来孩子会是什么样?”之类的问题。发表的该主题的方法有限。大多数现有方法训练单次亲属关系的模型,仅通过直接使用自动编码器来考虑一个父母的面孔和一个孩子的面部,而无需明确控制合成面与父脸的相似之处。在本文中,我们提出了一种新颖的方法,用于可控的后代脸部合成,该方法对两个父脸和一个孩子的脸之间的两种亲属关系进行了建模。我们的模型由继承模块和属性增强模块组成,该模块的设计旨在准确控制合成面部和父脸之间的相似之处,后者旨在控制年龄和性别。由于没有带有父母亲戚亲属注释的大规模数据库,因此我们提出了一种有效的策略来训练该模型,而无需使用地面真理后代面孔。除了仅年龄和培训面孔的性别标签外,不需要精心设计的图像对。我们对三个公共基准数据库进行了全面的实验评估,这表明结果令人鼓舞。

Kinship face synthesis is an interesting topic raised to answer questions like "what will your future children look like?". Published approaches to this topic are limited. Most of the existing methods train models for one-versus-one kin relation, which only consider one parent face and one child face by directly using an auto-encoder without any explicit control over the resemblance of the synthesized face to the parent face. In this paper, we propose a novel method for controllable descendant face synthesis, which models two-versus-one kin relation between two parent faces and one child face. Our model consists of an inheritance module and an attribute enhancement module, where the former is designed for accurate control over the resemblance between the synthesized face and parent faces, and the latter is designed for control over age and gender. As there is no large scale database with father-mother-child kinship annotation, we propose an effective strategy to train the model without using the ground truth descendant faces. No carefully designed image pairs are required for learning except only age and gender labels of training faces. We conduct comprehensive experimental evaluations on three public benchmark databases, which demonstrates encouraging results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源