论文标题

在深色特征空间中解开图像扭曲

Disentangling Image Distortions in Deep Feature Space

论文作者

Bianco, Simone, Celona, Luigi, Napoletano, Paolo

论文摘要

先前的文献表明,感知相似性是在深层视觉表示之间共有的新兴属性。在人为判断的图像扭曲数据集上进行的实验证明,深层具有优于经典感知指标的特征。在这项工作中,我们通过分析深层视觉表示本质上表征不同类型的图像扭曲的能力来进一步朝着对这种性质的更广泛理解的方向迈出一步。为此,我们首先生成许多合成扭曲的图像,然后分析由不同深神经网络的不同层提取的特征。我们观察到,从给定图层允许从特征空间中有效分开类型的扭曲类型的特征的尺寸减少了尺寸的表示。此外,每个网络层都具有不同类型的扭曲之间分离的不同能力,并且此功能根据网络体系结构而变化。最后,我们评估了从层中获得的特征的开发,以更好地将图像扭曲分开以下图像扭曲以下:i)减少引用图像质量评估,ii)单个和多个失真数据库的失真类型和严重性水平表征。在这两个任务上都取得的结果表明,可以不足以利用深层的视觉表示,以有效地表征各种图像扭曲。

Previous literature suggests that perceptual similarity is an emergent property shared across deep visual representations. Experiments conducted on a dataset of human-judged image distortions have proven that deep features outperform classic perceptual metrics. In this work we take a further step in the direction of a broader understanding of such property by analyzing the capability of deep visual representations to intrinsically characterize different types of image distortions. To this end, we firstly generate a number of synthetically distorted images and then we analyze the features extracted by different layers of different Deep Neural Networks. We observe that a dimension-reduced representation of the features extracted from a given layer permits to efficiently separate types of distortions in the feature space. Moreover, each network layer exhibits a different ability to separate between different types of distortions, and this ability varies according to the network architecture. Finally, we evaluate the exploitation of features taken from the layer that better separates image distortions for: i) reduced-reference image quality assessment, and ii) distortion types and severity levels characterization on both single and multiple distortion databases. Results achieved on both tasks suggest that deep visual representations can be unsupervisedly employed to efficiently characterize various image distortions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源