论文标题

PointTrackNet:用于从点云的3-D对象检测和跟踪的端到端网络

PointTrackNet: An End-to-End Network For 3-D Object Detection and Tracking From Point Clouds

论文作者

Wang, Sukai, Sun, Yuxiang, Liu, Chengju, Liu, Ming

论文摘要

最近基于机器学习的多对象跟踪(MOT)框架在3-D点云中变得流行。大多数传统的跟踪方法都使用过滤器(例如Kalman滤波器或粒子过滤器)以时间顺序预测对象位置,但是它们容易受到极端运动条件的影响,例如突然制动和转动。在这封信中,我们提出了PointTrackNet,这是一个端到端的3-D对象检测和跟踪网络,以生成前景掩码,3-D边界框以及每个检测到的对象的点跟踪关联位移。网络仅作为输入两个相邻点云帧。 KITTI跟踪数据集的实验结果在最新的情况下显示出竞争成果,尤其是在不规则和快速变化的情况下。

Recent machine learning-based multi-object tracking (MOT) frameworks are becoming popular for 3-D point clouds. Most traditional tracking approaches use filters (e.g., Kalman filter or particle filter) to predict object locations in a time sequence, however, they are vulnerable to extreme motion conditions, such as sudden braking and turning. In this letter, we propose PointTrackNet, an end-to-end 3-D object detection and tracking network, to generate foreground masks, 3-D bounding boxes, and point-wise tracking association displacements for each detected object. The network merely takes as input two adjacent point-cloud frames. Experimental results on the KITTI tracking dataset show competitive results over the state-of-the-arts, especially in the irregularly and rapidly changing scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源