论文标题
通过量子轨迹的后选择,混合利维维利的形式主义连接非温米特汉顿人和liouvillians的特殊点
Hybrid-Liouvillian formalism connecting exceptional points of non-Hermitian Hamiltonians and Liouvillians via postselection of quantum trajectories
论文作者
论文摘要
特殊点(EPS)是经典和量子开放系统的变性,在许多物理学领域进行了研究,包括光学,光电子,等化物质和冷凝物质。在半经典制度中,可以通过现象学有效的非热汉尔顿(NHHS)来描述开放系统,从而捕获了假想领域的增益和损失的影响。这种表征此类哈密顿人(HEP)光谱的EPS描述了没有量子跳跃的系统的时间演变。众所周知,描述更多通用动力学的完整量子处理必须考虑到这种量子跳跃。在最近的一篇论文[F. minganti $ et $ al。$,物理。 Rev. a $ \ mathbf {100} $,$ 062131 $($ 2019 $)],我们将EPS的概念概括为liouvillian超级操作器的光谱,由Lindblad Master方程式所描述的开放系统动力学。有趣的是,我们发现,在存在经典到量词对应关系的情况下,两种类型的动力学可以产生不同的EPS。在最近的实验工作中[M. naghiloo $ et $ al。$,nat。物理。 $ \ mathbf {15} $,$ 1232 $($ 2019 $)],证明可以通过对某些量子跳跃轨迹进行后选择,以量子限制来设计非热汉密尔顿人。这就提出了一个有趣的问题,该问题是关于哈密顿量和林德布拉德每股EPS以及量子轨迹之间的关系。我们通过引入混合利维利亚超级操作器来讨论这些连接,能够描述从NHH(仅一个没有量子跳跃的那些轨迹)到真正的liouvillian,包括量子跳跃(没有量子后)。除了其基本兴趣之外,我们的方法还允许直观地将选择后和有限效率探测器的影响联系起来。
Exceptional points (EPs) are degeneracies of classical and quantum open systems, which are studied in many areas of physics including optics, optoelectronics, plasmonics, and condensed matter physics. In the semiclassical regime, open systems can be described by phenomenological effective non-Hermitian Hamiltonians (NHHs) capturing the effects of gain and loss in terms of imaginary fields. The EPs that characterize the spectra of such Hamiltonians (HEPs) describe the time evolution of a system without quantum jumps. It is well known that a full quantum treatment describing more generic dynamics must crucially take into account such quantum jumps. In a recent paper [F. Minganti $et$ $al.$, Phys. Rev. A $\mathbf{100}$, $062131$ ($2019$)], we generalized the notion of EPs to the spectra of Liouvillian superoperators governing open system dynamics described by Lindblad master equations. Intriguingly, we found that in situations where a classical-to-quantum correspondence exists, the two types of dynamics can yield different EPs. In a recent experimental work [M. Naghiloo $et$ $al.$, Nat. Phys. $\mathbf{15}$, $1232$ ($2019$)], it was shown that one can engineer a non-Hermitian Hamiltonian in the quantum limit by postselecting on certain quantum jump trajectories. This raises an interesting question concerning the relation between Hamiltonian and Lindbladian EPs, and quantum trajectories. We discuss these connections by introducing a hybrid-Liouvillian superoperator, capable of describing the passage from an NHH (when one postselects only those trajectories without quantum jumps) to a true Liouvillian including quantum jumps (without postselection). Beyond its fundamental interest, our approach allows to intuitively relate the effects of postselection and finite-efficiency detectors.