论文标题

具有不完整标签的疾病诊断的动态图相关学习

Dynamic Graph Correlation Learning for Disease Diagnosis with Incomplete Labels

论文作者

Liu, Daizong, Xu, Shuangjie, Zhou, Pan, He, Kun, Wei, Wei, Xu, Zichuan

论文摘要

胸部X射线图像上的疾病诊断是一项具有挑战性的多标签分类任务。以前的工作通常将疾病分类在输入图像上,而无需考虑疾病之间的任何相关性。但是,这种相关实际上存在,例如,存在气胸时,胸腔积液更可能出现。在这项工作中,我们提出了一个疾病诊断图卷积网络(DD-GCN),该网络通过使用动态可学习的邻接矩阵来提高诊断准确性,从而提出了一种新颖的观点来研究不同疾病之间的相互依赖性。为了了解更多自然和可靠的相关关系,我们将每个节点用与每种类型疾病相对应的图像级个体特征图。据我们所知,我们的方法是第一个在特征图上构建图形的方法,该特征图具有动态邻接矩阵以进行相关学习。为了进一步处理不完整标签的实际问题,DD-GCN还利用自适应损失和课程学习策略来培训模型不完整的标签。两个流行的胸部X射线(CXR)数据集的实验结果表明,我们的预测准确性优于最先进的方法,而学习的图形邻接矩阵则建立了不同疾病的相关表示,这与专家经验一致。此外,我们应用消融研究来证明DD-GCN中每个组件的有效性。

Disease diagnosis on chest X-ray images is a challenging multi-label classification task. Previous works generally classify the diseases independently on the input image without considering any correlation among diseases. However, such correlation actually exists, for example, Pleural Effusion is more likely to appear when Pneumothorax is present. In this work, we propose a Disease Diagnosis Graph Convolutional Network (DD-GCN) that presents a novel view of investigating the inter-dependency among different diseases by using a dynamic learnable adjacency matrix in graph structure to improve the diagnosis accuracy. To learn more natural and reliable correlation relationship, we feed each node with the image-level individual feature map corresponding to each type of disease. To our knowledge, our method is the first to build a graph over the feature maps with a dynamic adjacency matrix for correlation learning. To further deal with a practical issue of incomplete labels, DD-GCN also utilizes an adaptive loss and a curriculum learning strategy to train the model on incomplete labels. Experimental results on two popular chest X-ray (CXR) datasets show that our prediction accuracy outperforms state-of-the-arts, and the learned graph adjacency matrix establishes the correlation representations of different diseases, which is consistent with expert experience. In addition, we apply an ablation study to demonstrate the effectiveness of each component in DD-GCN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源