论文标题

Freiman多塑形的逆定理

An inverse theorem for Freiman multi-homomorphisms

论文作者

Gowers, W. T., Milićević, L.

论文摘要

令$ g_1,\ dots,g_k $和$ h $是有限字段$ \ mathbb {f} _p $ prime订单的矢量空间。令$ a \ subset g_1 \ times \ dots \ times g_k $为一组尺寸$δ| g_1 | \ cdots | g_k | $。令映射$ ϕ \ colon a \ to h $为多态形态,这意味着对于[k] $中的每个方向$ d \,以及每个元素$(x_1,\ dots,x_ {d-1},x_ {d-1},x_ {d+1} g_ {d+1} \ times \ dots \ times g_k $,发送每个$ y_d $的地图,使得$(x_1,\ dots,$ $ x_ {d-1},$ $ $ y_d,$ $ x__ {d+1} $ x_ {D-1},$ $ y_d,$ $ x_ {d+1},\ dots,$ $ x_k)$是弗雷曼同构(订单2)。在本文中,我们证明,对于每张这样的地图,都有一个多芬映射$φ\ colon g_1 \ times \ dots \ times \ times g_k \ to h $,以至于一组密度上的$ ϕ =φ$ $ \ big(\ exp^{(o_k(1))}(o_ {k,p}(δ^{ - 1}))\ big)^{ - 1} $,其中$ \ exp^{(t)} $表示$ t $ - foldential。 该定理的应用包括: $ \ bullet $用于近似多项式的定量逆定理$ g $ to $ h $,用于有限维度$ \ mathbb {f} _p $ - vector-vector-vector-vector-vector-vector $ g $和$ h $,在高召唤案例中, $ \ bullet $ a量定定理,用于高示例性案例中有限领域的统一规范, $ \ bullet $ $ g_1 \ times \ dots \ times g_k $的密集子集的定量结构定理是主说明中的子空间(没有其他特征假设)。

Let $G_1, \dots, G_k$ and $H$ be vector spaces over a finite field $\mathbb{F}_p$ of prime order. Let $A \subset G_1 \times\dots\times G_k$ be a set of size $δ|G_1| \cdots |G_k|$. Let a map $ϕ\colon A \to H$ be a multi-homomorphism, meaning that for each direction $d \in [k]$, and each element $(x_1, \dots, x_{d-1}, x_{d+1}, \dots, x_k)$ of $G_1\times\dots\times G_{d-1}\times G_{d+1}\times \dots\times G_k$, the map that sends each $y_d$ such that $(x_1, \dots,$ $x_{d-1},$ $y_d,$ $x_{d+1}, \dots,$ $x_k) \in A$ to $ϕ(x_1, \dots,$ $x_{d-1},$ $y_d,$ $x_{d+1}, \dots,$ $x_k)$ is a Freiman homomorphism (of order 2). In this paper, we prove that for each such map, there is a multiaffine map $Φ\colon G_1 \times\dots\times G_k \to H$ such that $ϕ= Φ$ on a set of density $\Big(\exp^{(O_k(1))}(O_{k,p}(δ^{-1}))\Big)^{-1}$, where $\exp^{(t)}$ denotes the $t$-fold exponential. Applications of this theorem include: $\bullet$ a quantitative inverse theorem for approximate polynomials mapping $G$ to $H$, for finite-dimensional $\mathbb{F}_p$-vector spaces $G$ and $H$, in the high-characteristic case, $\bullet$ a quantitative inverse theorem for uniformity norms over finite fields in the high-characteristic case, and $\bullet$ a quantitative structure theorem for dense subsets of $G_1 \times\dots\times G_k$ that are subspaces in the principal directions (without additional characteristic assumptions).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源