论文标题
控制人造蜂窝旋转冰冰冰冰冰球中的旋转动力学的控制
Control of spin dynamics in artificial honeycomb spin-ice-based nanodisks
论文作者
论文摘要
我们报告了在蜂窝晶格上排列的铁磁纳米词阵列中角依赖性自旋动力学的实验和理论表征。通过宽带铁磁共振测量的磁场和微波频率依赖性揭示了丰富的模式,这些模式受网络的微晶格的强烈影响。基于相对于外部场的对称参数,我们表明铁磁网络的某些部分有助于检测到的信号。实验数据与微磁模拟的比较表明,晶格的不同小节主要有助于阵列的高频响应。使用微型布里鲁因光散射的光学表征证实了这一点。此外,我们发现低视野范围内涡流样磁化构型的成核和an灭会影响动力学,这与铁磁纳米纤维的簇不同。我们的作品开辟了设计的新观点,用于设计宏伟的设备,这些设备在低频率下的低频下,在低频的低频下结合了几何挫败感。
We report the experimental and theoretical characterization of the angular-dependent spin dynamics in arrays of ferromagnetic nanodisks arranged on a honeycomb lattice. The magnetic field and microwave frequency dependence, measured by broadband ferromagnetic resonance, reveal a rich spectrum of modes that is strongly affected by the microstate of the network. Based on symmetry arguments with respect to the external field, we show that certain parts of the ferromagnetic network contribute to the detected signal. A comparison of the experimental data with micromagnetic simulations reveals that different subsections of the lattice predominantly contribute to the high-frequency response of the array. This is confirmed by optical characterizations using microfocused Brillouin light scattering. Furthermore, we find indications that nucleation and annihilation of vortex-like magnetization configurations in the low-field range affect the dynamics, which is different from clusters of ferromagnetic nanoellipses. Our work opens up new perspectives for designing magnonic devices that combine geometric frustration in gyrotropic vortex crystals at low frequencies with magnonic crystals at high frequencies.