论文标题

Feynman的深度学习在强场时与时间相关的动态中不可或缺

Deep Learning for Feynman's Path Integral in Strong-Field Time-Dependent Dynamics

论文作者

Liu, Xiwang, Zhang, Guojun, Li, Jie, Shi, Guangluo, Zhou, Mingyang, Huang, Boqiang, Tang, Yajuan, Song, Xiaohong, Yang, Weifeng

论文摘要

Feynman的路径积分方法是总和所有可能的时空路径,以重现量子波函数和相应的时间演化,从经典角度来看,它具有巨大的潜力来揭示量子过程。但是,无限路径的量子波函数的完整表征是一个巨大的挑战,它极大地限制了应用潜力,尤其是在强场物理学和Attosecond科学中。我们没有通过预先分类的方案进行深度学习的强壮领域Feynman的表述,而不是蛮力跟踪每条路径,而是可以直接通过初始条件的数据来直接预测最终结果,以便攻击现有的强场方法并探索新的物理学。我们的结果通过Feynman的路径积分建立了深度学习和强场物理学之间的桥梁,这将促进深度学习的应用,以研究强场物理学和Attosecond Science的超快时间依赖性动力学,并为量子 - 经典的通讯提供了新的启示。

Feynman's path integral approach is to sum over all possible spatio-temporal paths to reproduce the quantum wave function and the corresponding time evolution, which has enormous potential to reveal quantum processes in classical view. However, the complete characterization of quantum wave function with infinite paths is a formidable challenge, which greatly limits the application potential, especially in the strong-field physics and attosecond science. Instead of brute-force tracking every path one by one, here we propose deep-learning-performed strong-field Feynman's formulation with pre-classification scheme which can predict directly the final results only with data of initial conditions, so as to attack unsurmountable tasks by existing strong-field methods and explore new physics. Our results build up a bridge between deep learning and strong-field physics through the Feynman's path integral, which would boost applications of deep learning to study the ultrafast time-dependent dynamics in strong-field physics and attosecond science, and shed a new light on the quantum-classical correspondence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源