论文标题

数十亿个动作原子的多部分纠缠。

Multipartite Entanglement of Billions of Motional Atoms Heralded by Single Photon

论文作者

Li, Hang, Dou, Jian-Peng, Pang, Xiao-Ling, Zhang, Chao-Ni, Yan, Zeng-Quan, Yang, Tian-Huai, Gao, Jun, Li, Jia-Ming, Jin, Xian-Min

论文摘要

量子纠缠对于量子计算,量子计量学,量子信息以及量子物理的性质至关重要。量子理论并不能阻止纠缠在宏观物理系统中被创建和观察,但是实际上,由于破坏性效应,可访问的纠缠范围仍然非常有限。最近,在极低温度和隔离良好的系统中,数千至数百万种原子中观察到了纠缠。在这里,我们在室温下在量子内存中创建了数十亿个动作原子的多部分纠缠,并通过与光子统计相关的$ m $ - $ - $分离性证人证明了真正的纠缠。发现单个光子中包含的信息与动作原子共有的激发密切相关,该动作原子本质地解决了大系统,因此刺激了多部分纠缠。值得注意的是,我们的预言和量子内置的内置纠缠产生使我们能够直接观察纠缠深度的动态演变,并进一步揭示逆转的影响。我们的结果验证了在环境条件下数十亿个动作原子中真正的多部分纠缠的存在,从而显着扩大了可访问的纠缠范围的边界。除了在一个全新的领域中探测量子到古典的过渡外,处理这种大规模纠缠的开发能力还可以增强新兴量子技术的广泛应用。

Quantum entanglement is of central importance to quantum computing, quantum metrology, quantum information as well as the nature of quantum physics. Quantum theory does not prevent entanglement from being created and observed in macroscopic physical systems, in reality however, the accessible scale of entanglement is still very limited due to decoherence effects. Recently, entanglement has been observed among atoms from thousands to millions level in extremely low-temperature and well-isolated systems. Here, we create multipartite entanglement of billions of motional atoms in a quantum memory at room temperature, and certify the genuine entanglement via $M$-separability witness associated with photon statistics. The information contained in a single photon is found strongly correlated with the excitation shared by the motional atoms, which intrinsically address the large system and therefore stimulate the multipartite entanglement. Remarkably, our heralded and quantum memory built-in entanglement generation allows us to directly observe the dynamic evolution of entanglement depth and further to reveal the effects of decoherence. Our results verify the existence of genuine multipartite entanglement among billions of motional atoms at ambient condition, significantly extending the boundary of the accessible scale of entanglement. Besides probing the quantum-to-classical transition in an entirely new realm, the developed abilities of manipulating such a large-scale entanglement may enhance a wide spectrum of applications for emerging quantum technologies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源