论文标题
全球最佳共识最大化,可在点和线图中鲁棒的视觉惯性定位
Globally optimal consensus maximization for robust visual inertial localization in point and line map
论文作者
论文摘要
基于地图的视觉惯性定位是减少移动机器人状态估计漂移的关键步骤。本地化的根本问题是从一组3D-2D特征对应关系中估算姿势,其中主要挑战是异常值的存在,尤其是在不断变化的环境中。在本文中,我们提出了一个基于共识最大化问题的有效全局优化的强大解决方案,该解决方案对高比例异常值不敏感。我们首先引入转换不变测量值(TIMS),以使点和线将共识最大化问题分解为旋转和转换子问题,从而使一个具有降低的解决方案尺寸的两个阶段求解器。然后,我们表明(i)可以通过仅使用一维分支和结合(BNB)最小化TIM来计算旋转,(ii)可以通过在优先级的渐进投票的情况下运行1次搜索三次搜索来找到翻译。与流行的随机求解器相比,我们的求解器可实现确定性的全局收敛,而无需依赖初始值。与现有基于BNB的方法相比,我们的方法的速度更快。最后,通过评估模拟和实际数据集上的性能,即使有90 \%的异常值(只有2个inliers),我们的方法也会提供准确的姿势。
Map based visual inertial localization is a crucial step to reduce the drift in state estimation of mobile robots. The underlying problem for localization is to estimate the pose from a set of 3D-2D feature correspondences, of which the main challenge is the presence of outliers, especially in changing environment. In this paper, we propose a robust solution based on efficient global optimization of the consensus maximization problem, which is insensitive to high percentage of outliers. We first introduce translation invariant measurements (TIMs) for both points and lines to decouple the consensus maximization problem into rotation and translation subproblems, allowing for a two-stage solver with reduced solution dimensions. Then we show that (i) the rotation can be calculated by minimizing TIMs using only 1-dimensional branch-and-bound (BnB), (ii) the translation can be found by running 1-dimensional search for three times with prioritized progressive voting. Compared with the popular randomized solver, our solver achieves deterministic global convergence without depending on an initial value. While compared with existing BnB based methods, ours is exponentially faster. Finally, by evaluating the performance on both simulation and real-world datasets, our approach gives accurate pose even when there are 90\% outliers (only 2 inliers).