论文标题

社交stgcnn:人类轨迹预测的社会时空图形卷积神经网络

Social-STGCNN: A Social Spatio-Temporal Graph Convolutional Neural Network for Human Trajectory Prediction

论文作者

Mohamed, Abduallah, Qian, Kun, Elhoseiny, Mohamed, Claudel, Christian

论文摘要

对行人行为的更好的机器理解可以在建模诸如自动驾驶汽车和人类等代理之间的相互作用时更快。行人轨迹不仅受行人本身的影响,而且还受到与周围物体的互动的影响。先前的方法通过使用各种集成不同学识渊博的行人状态的聚合方法对这些相互作用进行了建模。我们提出了社会时空图形卷积神经网络(Social-STGCNN),该神经网络(Social-STGCNN)通过将相互作用建模为图形来代替聚集方法。我们的结果表明,最终位移误差(FDE)的艺术状态有20%的改善,而平均位移误差(ADE)的参数却少8.5倍,而推理速度比以前报道的方法快48倍。此外,我们的模型是有效的,并且超过了ADE指标上的先前最新水平,只有20%的培训数据。我们提出一个内核功能,以嵌入邻接矩阵中行人之间的社交互动。通过定性分析,我们表明我们的模型继承了行人轨迹之间可以预期的社会行为。代码可在https://github.com/abduallahmohamed/social-stgcnn上找到。

Better machine understanding of pedestrian behaviors enables faster progress in modeling interactions between agents such as autonomous vehicles and humans. Pedestrian trajectories are not only influenced by the pedestrian itself but also by interaction with surrounding objects. Previous methods modeled these interactions by using a variety of aggregation methods that integrate different learned pedestrians states. We propose the Social Spatio-Temporal Graph Convolutional Neural Network (Social-STGCNN), which substitutes the need of aggregation methods by modeling the interactions as a graph. Our results show an improvement over the state of art by 20% on the Final Displacement Error (FDE) and an improvement on the Average Displacement Error (ADE) with 8.5 times less parameters and up to 48 times faster inference speed than previously reported methods. In addition, our model is data efficient, and exceeds previous state of the art on the ADE metric with only 20% of the training data. We propose a kernel function to embed the social interactions between pedestrians within the adjacency matrix. Through qualitative analysis, we show that our model inherited social behaviors that can be expected between pedestrians trajectories. Code is available at https://github.com/abduallahmohamed/Social-STGCNN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源