论文标题

关于奇数完美数字的一些模块化考虑

Some Modular Considerations Regarding Odd Perfect Numbers

论文作者

Dris, Jose Arnaldo Bebita, Diego, Immanuel Tobias San

论文摘要

让$ p^k m^2 $是一个奇怪的完美数字,具有特殊的Prime $ P $。在本文中,我们为双条件提供了替代证明,即$σ(M^2)\ equiv 1 \ pmod 4 $在且仅当$ p \ equiv k \ pmod 8 $时才保留。然后,当$σ(M^2)/p^k $是正方形时,我们将此结果应用于情况。

Let $p^k m^2$ be an odd perfect number with special prime $p$. In this article, we provide an alternative proof for the biconditional that $σ(m^2) \equiv 1 \pmod 4$ holds if and only if $p \equiv k \pmod 8$. We then give an application of this result to the case when $σ(m^2)/p^k$ is a square.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源