论文标题

一种基于和算法的无监督嵌入学习的综合方法

A Comprehensive Approach to Unsupervised Embedding Learning based on AND Algorithm

论文作者

Han, Sungwon, Xu, Yizhan, Park, Sungwon, Cha, Meeyoung, Li, Cheng-Te

论文摘要

无监督的嵌入学习旨在从数据中提取良好的表示,而无需任何手动标签,这在许多监督的学习任务中都是一个关键的挑战。本文提出了一种新的无监督嵌入方法,称为Super-and,该方法扩展了当前的最新模型。超级和具有独特的损失集,可以在低密度空间内收集附近的类似样品,同时保持不变特征与数据增强的完整功能。超级和胜过所有现有方法,并且在CIFAR-10的图像分类任务上获得了89.2%的精度。我们讨论了这种方法在协助半监督任务方面的实际含义。

Unsupervised embedding learning aims to extract good representation from data without the need for any manual labels, which has been a critical challenge in many supervised learning tasks. This paper proposes a new unsupervised embedding approach, called Super-AND, which extends the current state-of-the-art model. Super-AND has its unique set of losses that can gather similar samples nearby within a low-density space while keeping invariant features intact against data augmentation. Super-AND outperforms all existing approaches and achieves an accuracy of 89.2% on the image classification task for CIFAR-10. We discuss the practical implications of this method in assisting semi-supervised tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源