论文标题

在$ \ mathbb {p}^4 $ of度量$ d = g+1 $的希尔伯特方案中

On the Hilbert scheme of smooth curves in $\mathbb{P}^4$ of degree $d = g+1$ and genus $g$ with negative Brill-Noether number

论文作者

Keem, Changho, Kim, Yun-Hwan

论文摘要

我们用$ \ Mathcal {h} _ {d,g,r} $光滑曲线的希尔伯特方案,该方案是组件的结合,其一般点对应于平稳的不可减至且非降级曲线的$ d $ $ d $和属$ g $ g $ in $ \ pp^r $。在本文中,我们表明,对于Brill-Noether系列以外的低属$ g $,Hilbert方案$ \ Mathcal {h} _ {g+1,g,4} $是非空的,只要$ g \ ge 9 $和不可降低,唯一的组件通常会呈线性正常曲线,除非有线性正常的曲线,否则$ g = 9 $ = 9 $或$ g = 9 $或$ g = 12 $ = 12 $。这补充了Severi原始断言的有效性,即$ \ Mathcal {h} _ {d,g,g,r} $在Brill-nover范围之外的$ d = g+1 $和$ r = 4 $之外的不可约性。

We denote by $\mathcal{H}_{d,g,r}$ the Hilbert scheme of smooth curves, which is the union of components whose general point corresponds to a smooth irreducible and non-degenerate curve of degree $d$ and genus $g$ in $\PP^r$. In this article, we show that for low genus $g$ outside the Brill-Noether range, the Hilbert scheme $\mathcal{H}_{g+1,g,4}$ is non-empty whenever $g\ge 9$ and irreducible whose only component generically consists of linearly normal curves unless $g=9$ or $g=12$. This complements the validity of the original assertion of Severi regarding the irreducibility of $\mathcal{H}_{d,g,r}$ outside the Brill-Nother range for $d=g+1$ and $r=4$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源