论文标题

Lyman Alpha参考样本:X。使用多元回归预测星形星系的Lyman Alpha输出

Lyman Alpha Reference Sample: X. Predicting Lyman alpha output from starforming galaxies using multivariate regression

论文作者

Runnholm, Axel, Hayes, Matthew, Melinder, Jens, Rivera-Thorsen, Emil, Östlin, Göran, Cannon, John, Kunth, Daniel

论文摘要

了解莱曼$α$(ly $α$)从星形星系中辐射的产生和逃脱是天体物理学的长期存在的问题。预测星系的Ly $α$光度的能力将开辟新的探索电离时代(EOR)的方法,并在无法完成辐射转移计算的宇宙学模拟中估算出星系中的$ ly $α$。我们将多元回归方法应用于Lyman Alpha参考样品数据集,以获得星系属性与发射的LY $α$之间的关系。派生的关系可以预测我们的星系样品的LY $α$光度良好,无论我们是否仅考虑围绕$ \ sim 0.19 $ dex)的直接观察值(Root-Mean-square(RMS)分散)还是派生的物理量(RMS $ \ sim $ \ sim 0.27 $ dex)。我们在单独的紧凑型星形星系中的单独样本上证实了预测能力,并发现该预测效果很好,但是根据星系的红移,对测得的$ ly $α$发光度的孔径影响可能很重要。我们应用统计特征选择技术来确定数据集中变量的重要性顺序,从而使未来的观察值能够优化预测能力。当使用物理变量时,我们能够确定最重要的预测参数是恒星形成速率,灰尘灭绝,紧凑性和气体覆盖分数。我们在研究EOR和强度映射实验方面讨论了结果的应用。

Understanding the production and escape of Lyman $α$ (Ly$α$) radiation from star-forming galaxies is a long standing problem in astrophysics. The ability to predict the Ly$α$ luminosity of galaxies would open up new ways of exploring the Epoch of Reionization (EoR), and to estimate Ly$α$ emission from galaxies in cosmological simulations where radiative transfer calculations cannot be done. We apply multivariate regression methods to the Lyman Alpha Reference Sample dataset to obtain a relation between the galaxy properties and the emitted Ly$α$. The derived relation predicts the Ly$α$ luminosity of our galaxy sample to good accuracy, regardless of whether we consider only direct observables (root-mean-square (RMS) dispersion around the relation of $\sim 0.19$ dex) or derived physical quantities (RMS $\sim 0.27$ dex). We confirm the predictive ability on a separate sample of compact star-forming galaxies and find that the prediction works well, but that aperture effects on measured Ly$α$ luminosity may be important, depending on the redshift of the galaxy. We apply statistical feature selection techniques to determine an order of importance of the variables in our dataset, enabling future observations to be optimized for predictive ability. When using physical variables, we are able to determine that the most important predictive parameters are, in order, star formation rate, dust extinction, compactness and the gas covering fraction. We discuss the application of our results in terms of studying the EoR and intensity mapping experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源