论文标题
学习非线性动力学定律的张量网络方法
Tensor network approaches for learning non-linear dynamical laws
论文作者
论文摘要
给定对物理系统的观察,识别基本的非线性管理方程是一项基本任务,既是获得理解和产生确定性的未来预测所必需的。最实际的相关性是理论构建的自动化方法,可为具有多个自由度的复杂系统有效地扩展。迄今为止,可用的可扩展方法针对数据驱动的插值,而无需开发或提供深入了解基本基本物理原理(例如相互作用的局部性)。在这项工作中,我们表明可以通过基于张量的网络参数为管理方程来捕获各种物理约束,这自然可以确保可扩展性。除了提供促使将这种模型用于现实物理系统使用的分析结果外,我们还证明,有效的等级适应性优化算法可用于学习最佳的张量网络模型,而无需对精确张量排名有任何先验知识。因此,我们为从数据中恢复结构化的动力学定律提供了一种信息,可以适应地平衡表达性和可伸缩性的需求。
Given observations of a physical system, identifying the underlying non-linear governing equation is a fundamental task, necessary both for gaining understanding and generating deterministic future predictions. Of most practical relevance are automated approaches to theory building that scale efficiently for complex systems with many degrees of freedom. To date, available scalable methods aim at a data-driven interpolation, without exploiting or offering insight into fundamental underlying physical principles, such as locality of interactions. In this work, we show that various physical constraints can be captured via tensor network based parameterizations for the governing equation, which naturally ensures scalability. In addition to providing analytic results motivating the use of such models for realistic physical systems, we demonstrate that efficient rank-adaptive optimization algorithms can be used to learn optimal tensor network models without requiring a~priori knowledge of the exact tensor ranks. As such, we provide a physics-informed approach to recovering structured dynamical laws from data, which adaptively balances the need for expressivity and scalability.