论文标题

大规模学习多元鹰队的过程

Learning Multivariate Hawkes Processes at Scale

论文作者

Nickel, Maximilian, Le, Matthew

论文摘要

多元霍克斯流程(MHP)是一类重要的时间点过程,它们能够在理解和预测社会信息系统方面取得关键的进步。但是,由于其对时间依赖性的复杂建模,MHP已被证明很难扩展,这将其应用于相对较小的域而限制了。在这项工作中,我们提出了一种新颖的模型和计算方法来克服这一重要限制。通过在现实世界扩散过程中利用特征性的稀疏模式,我们表明我们的方法允许计算MHP的确切可能性和梯度 - 独立于基础网络的环境维度。我们在合成和现实世界数据集上显示,与稀疏事件序列上的标准方法相比,我们的模型不仅可以实现最新的预测结果,而且通过多个数量级来提高运行时性能。结合易于解释的潜在变量和影响结构,这使我们能够在先前无法实现的规模下分析扩散过程。

Multivariate Hawkes Processes (MHPs) are an important class of temporal point processes that have enabled key advances in understanding and predicting social information systems. However, due to their complex modeling of temporal dependencies, MHPs have proven to be notoriously difficult to scale, what has limited their applications to relatively small domains. In this work, we propose a novel model and computational approach to overcome this important limitation. By exploiting a characteristic sparsity pattern in real-world diffusion processes, we show that our approach allows to compute the exact likelihood and gradients of an MHP -- independently of the ambient dimensions of the underlying network. We show on synthetic and real-world datasets that our model does not only achieve state-of-the-art predictive results, but also improves runtime performance by multiple orders of magnitude compared to standard methods on sparse event sequences. In combination with easily interpretable latent variables and influence structures, this allows us to analyze diffusion processes at previously unattainable scale.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源