论文标题
深度学习启用了在每个安德滕纳功率约束下的下行链路束缚的优化:算法和实验演示
Deep Learning Enabled Optimization of Downlink Beamforming Under Per-Antenna Power Constraints: Algorithms and Experimental Demonstration
论文作者
论文摘要
本文使用多源多输入单一输出系统中的深度学习来快速下行链接算算法,在该系统中,每个在基站的传输天线都有其自身的功率约束。我们专注于信噪比 - 加上噪声比(SINR)平衡问题,该问题是准串联,但没有有效的解决方案。我们首先设计了一种快速的亚级别算法,该算法可以以降低的复杂性来实现近乎最佳的解决方案。然后,我们提出了一个深层的神经网络结构,以学习基于卷积网络的最佳光束形成,并利用原始问题的双重性。研究了两种学习各种双重变量的策略,以不同的精度研究了原始解决方案的相应恢复,该算法促进了原始解决方案。我们还开发了提出的算法的概括方法,以便它们可以在不重新训练的情况下适应不同数量的用户和天线。我们进行密集的数值模拟和测试床实验,以评估所提出的算法的性能。结果表明,所提出的算法在具有完美的频道信息的模拟中实现了接近最佳解决方案,并且在实验中胜过所谓的理论上最佳解决方案,这说明了比现有方案更好的性能复杂性权衡。
This paper studies fast downlink beamforming algorithms using deep learning in multiuser multiple-input-single-output systems where each transmit antenna at the base station has its own power constraint. We focus on the signal-to-interference-plus-noise ratio (SINR) balancing problem which is quasi-convex but there is no efficient solution available. We first design a fast subgradient algorithm that can achieve near-optimal solution with reduced complexity. We then propose a deep neural network structure to learn the optimal beamforming based on convolutional networks and exploitation of the duality of the original problem. Two strategies of learning various dual variables are investigated with different accuracies, and the corresponding recovery of the original solution is facilitated by the subgradient algorithm. We also develop a generalization method of the proposed algorithms so that they can adapt to the varying number of users and antennas without re-training. We carry out intensive numerical simulations and testbed experiments to evaluate the performance of the proposed algorithms. Results show that the proposed algorithms achieve close to optimal solution in simulations with perfect channel information and outperform the alleged theoretically optimal solution in experiments, illustrating a better performance-complexity tradeoff than existing schemes.