论文标题
在单次完整交叉环的乘法图的决定因素上
On the determinant of multiplication map of a monomial complete intersection ring
论文作者
论文摘要
在本文中,我们考虑了两个变量中的单一完整交叉点代数$ \ mathbb {k} [x,y]/\ langle x^d,y^q \ rangle $。对于$ l_1,\ ldots,l_ {d+q-2k} $ $ 1 $,我们给出了从度量$ k $的同质组成部分的线性图的公式,向$ d $ d+q-k $的同质组成部分,由$ d+q-k $的同质组成部分,由$ l_1 \ cdots \ cdots \ cdots \ cdots l_ cdots l_ l_ l_ l_ l_ l_ l_ l_ l_ l_ ^ d+q-k}
In this article, we consider the monomial complete intersection algebra $\mathbb{K}[x,y]/\langle x^d,y^q\rangle$ in two variables. For elements $l_1,\ldots,l_{d+q-2k}$ of degree $1$, we give a formula of the deteminant of linear map from the homogeneous component of degree $k$ to the homogenous component of degree $d+q-k$ defined by the multiplication of $l_1 \cdots l_{d+q-2k}$.