论文标题

多种构造方法的色彩恒定方法

A Multi-Hypothesis Approach to Color Constancy

论文作者

Hernandez-Juarez, Daniel, Parisot, Sarah, Busam, Benjamin, Leonardis, Ales, Slabaugh, Gregory, McDonagh, Steven

论文摘要

当代方法将颜色恒定问题作为学习相机特定的照明映射。虽然在摄像机特定数据上可以实现高精度,但这些模型取决于摄像机的光谱灵敏度,并且通常对新设备的概括较差。此外,由于问题的性质不佳,回归方法产生的点估计值未明确说明合理的照明解决方案之间的潜在歧义。我们提出了一个贝叶斯框架,该框架自然可以通过多种假设策略来处理颜色恒定的歧义。首先,我们以数据驱动的方式选择一组候选场景照明剂,然后将它们应用于目标图像以生成一组校正图像。其次,我们估计,对于每个校正的图像,使用摄像机 - 敏锐的CNN具有分性的光源的可能性。最后,我们的方法明确地从产生的后验概率分布中了解了最终的照明估计。我们的可能性估计器学会了回答一个摄像机不足的问题,因此可以通过将照明估计与监督学习任务删除有效的多相机培训。我们广泛评估了我们提出的方法,并为新的传感器概括而不重新训练树立了基准。我们的方法在保持实时执行的同时,在多个公共数据集(最高中间的角度错误改善)上提供了最先进的准确性(最高11%的角误差)。

Contemporary approaches frame the color constancy problem as learning camera specific illuminant mappings. While high accuracy can be achieved on camera specific data, these models depend on camera spectral sensitivity and typically exhibit poor generalisation to new devices. Additionally, regression methods produce point estimates that do not explicitly account for potential ambiguities among plausible illuminant solutions, due to the ill-posed nature of the problem. We propose a Bayesian framework that naturally handles color constancy ambiguity via a multi-hypothesis strategy. Firstly, we select a set of candidate scene illuminants in a data-driven fashion and apply them to a target image to generate of set of corrected images. Secondly, we estimate, for each corrected image, the likelihood of the light source being achromatic using a camera-agnostic CNN. Finally, our method explicitly learns a final illumination estimate from the generated posterior probability distribution. Our likelihood estimator learns to answer a camera-agnostic question and thus enables effective multi-camera training by disentangling illuminant estimation from the supervised learning task. We extensively evaluate our proposed approach and additionally set a benchmark for novel sensor generalisation without re-training. Our method provides state-of-the-art accuracy on multiple public datasets (up to 11% median angular error improvement) while maintaining real-time execution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源