论文标题

高阶马尔可夫链的加速功率方法

Accelerating Power Methods for Higher-order Markov Chains

论文作者

Yu, Gaohang, Zhou, Yi, Lv, Laishui

论文摘要

高阶马尔可夫连锁店在许多领域都起着非常重要的作用,从多线性pagerank到财务建模。在本文中,我们提出了三种加速的高阶功率方法,用于计算高阶马尔可夫链的限制概率分布,即具有动量和高阶二次外推法的高阶功率方法。建立了收敛结果,并报告了数值实验以显示所提出的算法的效率。特别是,非参数二次外推法非常有竞争力,并且表现优于最先进的比赛。

Higher-order Markov chains play a very important role in many fields, ranging from multilinear PageRank to financial modeling. In this paper, we propose three accelerated higher-order power methods for computing the limiting probability distribution of higher-order Markov chains, namely higher-order power method with momentum and higher-order quadratic extrapolation method. The convergence results are established, and numerical experiments are reported to show the efficiency of the proposed algorithms. In particular, the non-parametric quadratic extrapolation method is very competitive, and outperforms state-of-the-art competitions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源