论文标题
在L空间结上手术的插入式Instanton同源性
Framed instanton homology of surgeries on L-space knots
论文作者
论文摘要
重要的三个manifolds是L空间,它们是最小的浮点同源性的合理同源性领域。对于通过Instanton L空间手术的结,我们计算了所有积分手术的框架插入式浮子同源性。结果,如果结具有Heegaard浮子和Instanton Floer L空间手术,那么这些理论都同意所有整体手术。为了证明主要结果,我们证明了Baldwin-Sivek触点不变的Instanton Floer同源性在绝对$ \ Mathbb {Z}/2 $ - grading方面是同质的,但不是$ \ Mathbb {Z}}/4 $ -grading。
An important class of three-manifolds are L-spaces, which are rational homology spheres with the smallest possible Floer homology. For knots with an instanton L-space surgery, we compute the framed instanton Floer homology of all integral surgeries. As a consequence, if a knot has a Heegaard Floer and instanton Floer L-space surgery, then the theories agree for all integral surgeries. In order to prove the main result, we prove that the Baldwin-Sivek contact invariant in framed instanton Floer homology is homogeneous with respect to the absolute $\mathbb{Z}/2$-grading, but not the $\mathbb{Z}/4$-grading.