论文标题

量子状态的强大分解

Robust decompositions of quantum states

论文作者

Moussa, Jonathan E.

论文摘要

经典的量词计算复杂性分离是数字量子计算机长期开发的重要动机,但是在我们当前嘈杂的中间尺度量子设备的时代,经典的量子复杂性等效性同样重要,以构架近距离进展,以实现量子至上。我们使用嘈杂的量子电路模型建立了一个这样的等效性,该模型可以在经典计算机上有效地模拟。关于其噪声模型,量子状态在一系列操作中具有强大的分解,每个操作序列都通过一个量子扩展了一个量子,而不会在量子位之间扩散误差。这使得以这种稳健形式的有效表示状态的状态进行通用量子采样,并且具有低量子重量的可观察力,可以从几个量子位上的一般测量和计算基础测量中对其剩余量子的一般测量进行采样。这些强大的分解不是唯一的,我们构建了两个不同的变体,这两种变体都与机器学习方法兼容。它们都可以在von Neumann熵上有效地可计算的下限,因此可以用作有限的温度变化量子蒙特卡洛方法。

Classical-quantum computational complexity separations are an important motivation for the long-term development of digital quantum computers, but classical-quantum complexity equivalences are just as important in our present era of noisy intermediate-scale quantum devices for framing near-term progress towards quantum supremacy. We establish one such equivalence using a noisy quantum circuit model that can be simulated efficiently on classical computers. With respect to its noise model, quantum states have a robust decomposition into a sequence of operations that each extend the state by one qubit without spreading errors between qubits. This enables universal quantum sampling of states with an efficient representation in this robust form and observables with low quantum weight that can be sampled from general measurements on a few qubits and computational basis measurements on the remaining qubits. These robust decompositions are not unique, and we construct two distinct variants, both of which are compatible with machine-learning methodology. They both enable efficiently computable lower bounds on von Neumann entropy and thus can be used as finite-temperature variational quantum Monte Carlo methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源