论文标题

重量$ q $ -mmultiplicities用于特殊谎言代数$ \ mathfrak {g} _2 $的表示形式

Weight $q$-multiplicities for representations of the exceptional Lie algebra $\mathfrak{g}_2$

论文作者

Cockerham, Jerrell, González, Melissa Gutiérrez, Harris, Pamela E., Loving, Marissa, Miniño, Amaury V., Rennie, Joseph, Kirby, Gordon Rojas

论文摘要

给定一个简单的谎言代数$ \ mathfrak {g} $,Kostant的重量$ Q $ -MMULTIPLICITICITICY公式是与Weyl组交替的总和,其术语涉及Kostant分区功能的$ Q $ -Analog。 For $ξ$ (a weight of $\mathfrak{g}$), the $q$-analog of Kostant's partition function is a polynomial-valued function defined by $\wp_q(ξ)=\sum c_i q^i$ where $c_i$ is the number of ways $ξ$ can be written as a sum of $i$ positive roots of $\mathfrak{g}$.这样,对Kostant的重量$ Q $ -Multiplicity公式的评估$ Q = 1 $恢复了重量的多重性,以$ \ Mathfrak {g} $的最高权重表示。在本文中,我们给出了用于计算权重$ q $ - 多重表示的封闭公式,以最高的重量表示代数代数$ \ mathfrak {g} _2 $。

Given a simple Lie algebra $\mathfrak{g}$, Kostant's weight $q$-multiplicity formula is an alternating sum over the Weyl group whose terms involve the $q$-analog of Kostant's partition function. For $ξ$ (a weight of $\mathfrak{g}$), the $q$-analog of Kostant's partition function is a polynomial-valued function defined by $\wp_q(ξ)=\sum c_i q^i$ where $c_i$ is the number of ways $ξ$ can be written as a sum of $i$ positive roots of $\mathfrak{g}$. In this way, the evaluation of Kostant's weight $q$-multiplicity formula at $q = 1$ recovers the multiplicity of a weight in a highest weight representation of $\mathfrak{g}$. In this paper, we give closed formulas for computing weight $q$-multiplicities in a highest weight representation of the exceptional Lie algebra $\mathfrak{g}_2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源