论文标题
在积聚中子星上建模热核X射线爆发
Modelling Thermonuclear X-ray Bursts on Accreting Neutron Stars
论文作者
论文摘要
在低质量的X射线二进制中,恒星材料上的中子恒星的积聚会为被称为I型X射线爆发的不稳定的热核闪光燃料。使用计算模型模拟这些事件可以提供有关积极系统性质的有价值信息。具有较大核反应网络的一维天体物理代码是模拟X射线爆发的当前最新技术。这些代码可以通过数千种核反应途径跟踪同位素的演变,以预测释放的核能和灰烬的最终组成。在这篇论文中,我广泛使用开普勒,这是这些努力最前沿的一项代码。我首先对开普勒突发模型的设置和分析进行了改进。通过考虑最初条件下的核加热,我缩短了热燃烧时间,从而减少了计算费用并产生更一致的爆发列车。为了模拟瞬态积聚事件助长的爆发,我以完全依赖时间的积聚速率执行了第一个此类模拟。在先前为“时钟伯斯特”建模的努力基础上,GS 1826 $ - $ 238,我预先计算了3840个模拟的网格,并使用马尔可夫链蒙特卡洛(MCMC)方法对插值结果进行了对。通过比较预测与多上述观测值,我获得了系统参数的后验概率分布。然后,我使用168个模拟的网格将这些MCMC方法扩展到Pure-Helium Burster,4U 1820 $ -30。最后,我讨论了未来研究的潜在改进,以进一步开发积聚中子恒星的计算建模。
In low-mass X-ray binaries, the accretion of stellar material onto a neutron star can fuel unstable thermonuclear flashes known as Type I X-ray bursts. Simulating these events using computational models can provide valuable information about the nature of the accreting system. One-dimensional (1D) astrophysics codes with large nuclear reaction networks are the current state-of-the-art for simulating X-ray bursts. These codes can track the evolution of isotopes through thousands of nuclear reaction pathways, to predict the released nuclear energy and final composition of the ashes. In this thesis, I make extensive use of KEPLER, a 1D code at the forefront of these efforts. I first present improvements to the setup and analysis of KEPLER burst models. By accounting for nuclear heating in the initial conditions, I shorten the thermal burn-in time, thereby reducing computational expense and producing more consistent burst trains. To model bursts fueled by transient accretion events, I perform the first such simulations with fully time-dependent accretion rates. Building upon previous efforts to model the "Clocked Burster", GS 1826$-$238, I precompute a grid of 3840 simulations and sample the interpolated results using Markov Chain Monte Carlo (MCMC) methods. By comparing the predictions to multi-epoch observations, I obtain posterior probability distributions for the system parameters. I then extend these MCMC methods to the pure-helium burster, 4U 1820$-$30, using a grid of 168 simulations. Finally, I discuss potential improvements for future studies, to further develop the computational modelling of accreting neutron stars.