论文标题

改进了平面中复杂值漂移方程的定量独特延续

Improved quantitative unique continuation for complex-valued drift equations in the plane

论文作者

Davey, Blair, Kenig, Carlos, Wang, Jenn-Nan

论文摘要

在本文中,我们研究了复杂值解决方案在平面中漂移方程的定量独特延续性。我们考虑了$ \ \ nabla u = 0 $ in $ \ mathbb {r}^2 $,其中$ w = w_1 + i w_2 $,每个$ w_j $ real-valueD的等式的方程式。假设在l^{q_j} $中,对于某些$ q_1 \ in [2,\ infty] $,\ infty] $,$ q_2 \ in(2,\ infty] $和$ w_2 $在无限属处表现出快速衰减的快速衰减。消失的估计与有限迭代方案相结合。

In this article, we investigate the quantitative unique continuation properties of complex-valued solutions to drift equations in the plane. We consider equations of the form $Δu + W \cdot \nabla u = 0$ in $\mathbb{R}^2$, where $W = W_1 + i W_2$ with each $W_j$ real-valued. Under the assumptions that $W_j \in L^{q_j}$ for some $q_1 \in [2, \infty]$, $q_2 \in (2, \infty]$, and $W_2$ exhibits rapid decay at infinity, we prove new global unique continuation estimates. This improvement is accomplished by reducing our equations to vector-valued Beltrami systems. Our results rely on a novel order of vanishing estimate combined with a finite iteration scheme.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源