论文标题

基于本体的解释机器学习文本数据

Ontology-based Interpretable Machine Learning for Textual Data

论文作者

Lai, Phung, Phan, NhatHai, Hu, Han, Badeti, Anuja, Newman, David, Dou, Dejing

论文摘要

在本文中,我们介绍了一个新颖的解释框架,该框架基于基于本体的采样技术来学习可解释的模型,以解释不可知论的预测模型。与现有方法不同,我们的算法考虑了在域知识本体中描述的单词之间的上下文相关性,以产生语义解释。为了缩小解释的搜索空间,这是长期且复杂的文本数据的一个主要问题,我们设计了一种可学习的锚算法,以更好地在本地提取解释。将一组法规进一步介绍,以将可解释的表示形式与锚点相结合以产生可理解的语义解释。在两个现实世界数据集上进行的广泛实验表明,与基线方法相比,我们的方法会产生更精确和有见地的解释。

In this paper, we introduce a novel interpreting framework that learns an interpretable model based on an ontology-based sampling technique to explain agnostic prediction models. Different from existing approaches, our algorithm considers contextual correlation among words, described in domain knowledge ontologies, to generate semantic explanations. To narrow down the search space for explanations, which is a major problem of long and complicated text data, we design a learnable anchor algorithm, to better extract explanations locally. A set of regulations is further introduced, regarding combining learned interpretable representations with anchors to generate comprehensible semantic explanations. An extensive experiment conducted on two real-world datasets shows that our approach generates more precise and insightful explanations compared with baseline approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源