论文标题
非保守相互作用粒子的空间分布
Spatial distributions of non-conservatively interacting particles
论文作者
论文摘要
某些类型的活动系统可以视为平衡系统,其过量的非保守力驱动了一些显微镜自由度。我们得出了有多少粒子与保守和非保守力相互作用的结果。为了治疗非保守力扰动,我们显示了微观自由度的概率分布如何从玻尔兹曼分布中修饰。我们将扰动扩展与确切可解决的非保守系统进行了比较。然后,我们通过分析扰动的性质来得出此分布的近似形式。最后,我们考虑了微观分布的近似形式如何在粗粒度时导致不同的宏观状态,并将其定性地与非保存相互作用的粒子进行定性进行比较。特别是我们通过引入粒子之间的非保守相互作用来注意,我们通过额外的术语修改密度,这些术语夫妇到表面
Certain types of active systems can be treated as an equilibrium system with excess non-conservative forces driving some of the microscopic degrees of freedom. We derive results for how many particles interacting with each other with both conservative and non-conservative forces will behave. Treating non-conservative forces perturbatevily, we show how the probability distribution of the microscopic degrees of freedom is modified from the Boltzmann distribution. We compare the perturbative expansion to an exactly solvable non-conservative system. We then derive approximate forms of this distribution through analyzing the nature of our perturbations. Finally, we consider how the approximate forms for the microscopic distributions we have derived lead to different macroscopic states when coarse grained, and compare it qualitatively to simulation of non-conservatively interacting particles. In particular we note by introducing non-conservative interactions between particles we modify densities through extra terms which couple to surfaces