论文标题

了解基于GPU的极限宇宙学模拟的有损压缩

Understanding GPU-Based Lossy Compression for Extreme-Scale Cosmological Simulations

论文作者

Jin, Sian, Grosset, Pascal, Biwer, Christopher M., Pulido, Jesus, Tian, Jiannan, Tao, Dingwen, Ahrens, James

论文摘要

为了更好地了解我们的宇宙,研究人员和科学家目前对领导力超级计算机进行极端规模的宇宙学模拟。但是,这样的模拟可以生成大量的科学数据,这通常会导致与数据移动和存储相关的数据成本昂贵。有损压缩技术变得有吸引力,因为它们会显着降低数据大小,并可以维持高数据保真度以进行分析后。在本文中,我们建议将基于GPU的损耗压缩用于极端宇宙学模拟。我们的贡献是三倍:(1)我们将多个基于GPU的损耗压缩机实现为我们的OpenSource压缩基准和名为Foresight的分析框架; (2)我们使用远见来全面评估基于一系列评估指标的两个现实世界中极限宇宙学模拟,即HACC和NYX的实用性; (3)我们制定了有关如何确定不同有损压缩机和宇宙学仿真的最佳拟合配置的一般优化指南。实验表明,基于GPU的损耗压缩可以为宇宙学模拟的分析提供必要的准确性,而在测试数据集上的高压比为5〜15倍,以及比基于CPU的压缩机更高的压缩和减压吞吐量。

To help understand our universe better, researchers and scientists currently run extreme-scale cosmology simulations on leadership supercomputers. However, such simulations can generate large amounts of scientific data, which often result in expensive costs in data associated with data movement and storage. Lossy compression techniques have become attractive because they significantly reduce data size and can maintain high data fidelity for post-analysis. In this paper, we propose to use GPU-based lossy compression for extreme-scale cosmological simulations. Our contributions are threefold: (1) we implement multiple GPU-based lossy compressors to our opensource compression benchmark and analysis framework named Foresight; (2) we use Foresight to comprehensively evaluate the practicality of using GPU-based lossy compression on two real-world extreme-scale cosmology simulations, namely HACC and Nyx, based on a series of assessment metrics; and (3) we develop a general optimization guideline on how to determine the best-fit configurations for different lossy compressors and cosmological simulations. Experiments show that GPU-based lossy compression can provide necessary accuracy on post-analysis for cosmological simulations and high compression ratio of 5~15x on the tested datasets, as well as much higher compression and decompression throughput than CPU-based compressors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源