论文标题
非精英进化算法的自我适应在离散问题的离散问题未知的问题
Self-adaptation in non-Elitist Evolutionary Algorithms on Discrete Problems with Unknown Structure
论文作者
论文摘要
有效利用进化算法的关键挑战是为其参数选择适当的设置。但是,适当的参数设置通常取决于优化问题的结构,这是用户通常未知的。非确定性参数控制机制使用从进化过程获得的信息调整参数。自我适应 - 参数设置在个体的染色体中编码并通过突变和交叉发展 - 是进化策略中流行的参数控制机制。但是,几乎没有理论上的证据表明自我适应是有效的,并且自我适应在很大程度上被离散的进化计算界忽略了。 在这里,我们通过理论运行时分析表明,一种非精美的,离散的进化算法,该算法自适应其突变率不仅超过了\领位上使用静态突变速率的EA,而且使用先进的控制机制在EA上渐近地改善了EA。此问题的结构取决于参数$ k $,该参数是\ emph {a emph {a算法未知的,并且需要适当设置固定的突变率。自适应EA达到了同样的渐近运行时,就好像事先算法所知道的那样,这是该问题的渐近加速度,与先前研究的所有其他EAS相比。一项关于突变率如何发展的实验研究表明,它们对各种问题结构的反应充分反应。 这些结果表明,应更广泛地采用自我适应的参数控制机制,中的非私人进化算法中的参数控制机制。
A key challenge to make effective use of evolutionary algorithms is to choose appropriate settings for their parameters. However, the appropriate parameter setting generally depends on the structure of the optimisation problem, which is often unknown to the user. Non-deterministic parameter control mechanisms adjust parameters using information obtained from the evolutionary process. Self-adaptation -- where parameter settings are encoded in the chromosomes of individuals and evolve through mutation and crossover -- is a popular parameter control mechanism in evolutionary strategies. However, there is little theoretical evidence that self-adaptation is effective, and self-adaptation has largely been ignored by the discrete evolutionary computation community. Here we show through a theoretical runtime analysis that a non-elitist, discrete evolutionary algorithm which self-adapts its mutation rate not only outperforms EAs which use static mutation rates on \leadingones, but also improves asymptotically on an EA using a state-of-the-art control mechanism. The structure of this problem depends on a parameter $k$, which is \emph{a priori} unknown to the algorithm, and which is needed to appropriately set a fixed mutation rate. The self-adaptive EA achieves the same asymptotic runtime as if this parameter was known to the algorithm beforehand, which is an asymptotic speedup for this problem compared to all other EAs previously studied. An experimental study of how the mutation-rates evolve show that they respond adequately to a diverse range of problem structures. These results suggest that self-adaptation should be adopted more broadly as a parameter control mechanism in discrete, non-elitist evolutionary algorithms.