论文标题
带有共振的球形电效量黑孔,标量$ q $ - 毛
Spherical electro-vacuum black holes with resonant, scalar $Q$-hair
论文作者
论文摘要
显示出渐近平坦的球形,电效黑色孔(BHS)可支持静态的,分量的自我相互作用,标量场的静态球形构型,最小化与几何形状。考虑到标量字段的$ q $ -ball类型潜力,我们将这些配置$ q $ -clouds在测试字段近似中进行了配置。云在共振状态下存在,在(充电)超级范围的阈值下。这类似于Kerr BHS支持的固定云,在(旋转)超级级别的阈值下,它存在于同步条件下。但是,与旋转情况相反,$ q $ clouds要求标量场是巨大的和自我相互作用的。对于庞大的自由标量字段,没有类似的云。首先,考虑到脱钩限制,我们在Schwarzschild和Reissner-NordströmBHS周围构建了$ Q $ clouds,这表明总是存在质量差距。然后,我们进行$ q $ clouds的反应,并构建Einstein-Maxwell-Gaug-gaug-gaug标量系统的完全非线性解决方案,该系统描述了带有共鸣的球形,带电的BHS,标量$ q $ - hair。在其他属性中,我们观察到该模型中充电的BHS并非唯一性,并且$ q $ - $ hairy BHS可以比reissner-nordström偏爱,以相同的质量比;一些$ Q $ -Hairy BH Solutions可以过多收费。我们还讨论了文献中一些众所周知的无头性定理,该定理如何适用于Electro-Vacuum以及这种新型的BHS的避免使用最小耦合的标量场。
The asymptotically flat, spherical, electro-vacuum black holes (BHs) are shown to support static, spherical configurations of a gauged, self-interacting, scalar field, minimally coupled to the geometry. Considering a $Q$-ball type potential for the scalar field, we dub these configurations $Q$-clouds, in the test field approximation. The clouds exist under a resonance condition, at the threshold of (charged) superradiance. This is similar to the stationary clouds supported by Kerr BHs, which exist for a synchronisation condition, at the threshold of (rotational) superradiance. In contrast with the rotating case, however, $Q$-clouds require the scalar field to be massive and self-interacting; no similar clouds exist for massive but free scalar fields. First, considering a decoupling limit, we construct $Q$-clouds around Schwarzschild and Reissner-Nordström BHs, showing there is always a mass gap. Then, we make the $Q$-clouds backreact, and construct fully non-linear solutions of the Einstein-Maxwell-gauged scalar system describing spherical, charged BHs with resonant, scalar $Q$-hair. Amongst other properties, we observe there is non-uniqueness of charged BHs in this model and the $Q$-hairy BHs can be entropically preferred over Reissner-Nordström, for the same charge to mass ratio; some $Q$-hairy BH solutions can be overcharged. We also discuss how some well known no-hair theorems in the literature, applying to electro-vacuum plus minimally coupled scalar fields, are circumvented by this new type of BHs.