论文标题

可编辑的神经网络

Editable Neural Networks

论文作者

Sinitsin, Anton, Plokhotnyuk, Vsevolod, Pyrkin, Dmitriy, Popov, Sergei, Babenko, Artem

论文摘要

如今,深度神经网络被普遍存在,从图像分类和机器翻译到面对识别和自动驾驶汽车的各种任务。在许多应用中,单个模型错误可能导致毁灭性的财务,声誉甚至威胁生命的后果。因此,在出现时快速纠正模型错误至关重要。在这项工作中,我们研究了神经网络编辑$ - $的问题,即如何在特定样本上有效地修补该模型的错误,而不会影响其他样本的模型行为。也就是说,我们提出了一种模型不足的培训技术,鼓励训练有素的模型进行快速编辑。我们从经验上证明了该方法对大规模图像分类和机器翻译任务的有效性。

These days deep neural networks are ubiquitously used in a wide range of tasks, from image classification and machine translation to face identification and self-driving cars. In many applications, a single model error can lead to devastating financial, reputational and even life-threatening consequences. Therefore, it is crucially important to correct model mistakes quickly as they appear. In this work, we investigate the problem of neural network editing $-$ how one can efficiently patch a mistake of the model on a particular sample, without influencing the model behavior on other samples. Namely, we propose Editable Training, a model-agnostic training technique that encourages fast editing of the trained model. We empirically demonstrate the effectiveness of this method on large-scale image classification and machine translation tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源