论文标题

Hermitian Theta系列和Maaß空间在Hermitian模块化组最大离散延伸的作用下

Hermitian theta series and Maaß spaces under the action of the maximal discrete extension of the Hermitian modular group

论文作者

Wernz, Annalena

论文摘要

令$γ_n(\ Mathcal {\ scriptStyle {o}} _ {\ Mathbb {k}})$表示假想的二次数字$ \ \ m athbb {k} $和$δ_{组$ su(n,n; \ mathbb {c})$。在本文中,我们研究了Hermitian Theta系列和Maass空间的$δ_{N,\ Mathbb {K}}^*$的动作。对于$ n = 2 $,我们会找到theta lattices,以使相应的theta系列是相对于$δ_{2,\ mathbb {k}}}^*$的模块化表单,以及情况并非如此。我们的第二个重点在于研究两个不同的Maass空间。我们将看到新发现的组$δ_{2,\ Mathbb {k}}}^*$巩固了空间的不同定义。

Let $Γ_n(\mathcal{\scriptstyle{O}}_{\mathbb{K}})$ denote the Hermitian modular group of degree $n$ over an imaginary quadratic number field $\mathbb{K}$ and $Δ_{n,\mathbb{K}}^*$ its maximal discrete extension in the special unitary group $SU(n,n;\mathbb{C})$. In this paper we study the action of $Δ_{n,\mathbb{K}}^*$ on Hermitian theta series and Maass spaces. For $n=2$ we will find theta lattices such that the corresponding theta series are modular forms with respect to $Δ_{2,\mathbb{K}}^*$ as well as examples where this is not the case. Our second focus lies on studying two different Maass spaces. We will see that the new found group $Δ_{2,\mathbb{K}}^*$ consolidates the different definitions of the spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源