论文标题

药物疾病图:通过图神经网络预测使用临床数据的不良药物反应信号

Drug-disease Graph: Predicting Adverse Drug Reaction Signals via Graph Neural Network with Clinical Data

论文作者

Kwak, Heeyoung, Lee, Minwoo, Yoon, Seunghyun, Chang, Jooyoung, Park, Sangmin, Jung, Kyomin

论文摘要

不良药物反应(ADR)是全世界的重要公共卫生问题。许多基于图的方法已应用于生物医学图,以预测售前阶段的ADR。市场后监视中的ADR检测远比售前评估重要,并且近年来,具有大规模临床数据的ADR检测吸引了很多关注。但是,考虑从临床数据中检测ADR信号的图形结构的研究并不多,这是一对处方和可能是潜在ADR的诊断。在这项研究中,我们使用医疗保健索赔数据开发了一个基于图形的新型框架,用于ADR信号检测。我们构建一个药物 - 疾病图,其节点代表医疗代码。边缘作为使用数据计算的两个代码之间的关系。我们使用副作用资源数据库的标签应用图形神经网络来预测ADR信号。与其他算法相比,该模型的AUROC和AUPRC性能提高了0.795和0.775,这表明它成功地学习了表达这些关系的节点表示。此外,我们的模型预测已建立的ADR数据库中不存在的ADR对,显示了其补充ADR数据库的能力。

Adverse Drug Reaction (ADR) is a significant public health concern world-wide. Numerous graph-based methods have been applied to biomedical graphs for predicting ADRs in pre-marketing phases. ADR detection in post-market surveillance is no less important than pre-marketing assessment, and ADR detection with large-scale clinical data have attracted much attention in recent years. However, there are not many studies considering graph structures from clinical data for detecting an ADR signal, which is a pair of a prescription and a diagnosis that might be a potential ADR. In this study, we develop a novel graph-based framework for ADR signal detection using healthcare claims data. We construct a Drug-disease graph with nodes representing the medical codes. The edges are given as the relationships between two codes, computed using the data. We apply Graph Neural Network to predict ADR signals, using labels from the Side Effect Resource database. The model shows improved AUROC and AUPRC performance of 0.795 and 0.775, compared to other algorithms, showing that it successfully learns node representations expressive of those relationships. Furthermore, our model predicts ADR pairs that do not exist in the established ADR database, showing its capability to supplement the ADR database.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源