论文标题

在具有相互作用和障碍的一维系统中的理性边界电荷

Rational boundary charge in one-dimensional systems with interaction and disorder

论文作者

Pletyukhov, Mikhail, Kennes, Dante M., Piasotski, Kiryl, Klinovaja, Jelena, Loss, Daniel, Schoeller, Herbert

论文摘要

我们研究了具有转化不变性的通用半侵入一维绝缘子的边界费$ q_b $,并表明非本地对称性(即包括翻译)导致合理量化$ p/q $ $ q_b $。特别是,我们发现(直至一个未知的整数)$ q_b $的量化以$ \ frac {1} {1} {2} {2} {2} \barρ$和$ \ frac {1} {1} {2} {2} {2}(\barρ-1)$,$ \barρ$是平均每个位置的电荷(这是一个iNS属于一个iNTAILATION的数字)的整数单位。这是对具有本地反转或局部手性对称性系统的$ q_b $的已知半数量化的直接概括。相当值得注意的是,即使存在短额电子电子相互作用以及静态随机疾病(破坏翻译不变性),这种有理量化仍然有效。这种惊人的稳定性可以追溯到绝缘体中的局部扰动仅诱导局部电荷再分配。我们通过互补方法(包括密度矩阵重新归一化组计算,载体方法和特定晶格模型的精确解决方案)建立了这一结果。此外,对于半填充$ \barρ= \ frac {1} {2} $的特殊情况,我们介绍了明确的结果,以单渠道和最近的邻居跳跃模型并在差距闭合点识别Weyl Semimetal Physics。我们的一般框架还使我们能够对域壁上孤子电荷的众所周知合理量化进行新的启示。

We study the boundary charge $Q_B$ of generic semi-infinite one-dimensional insulators with translational invariance and show that non-local symmetries (i.e., including translations) lead to rational quantizations $p/q$ of $Q_B$. In particular, we find that (up to an unknown integer) the quantization of $Q_B$ is given in integer units of $\frac{1}{2}\barρ$ and $\frac{1}{2}(\barρ-1)$, where $\barρ$ is the average charge per site (which is a rational number for an insulator). This is a direct generalization of the known half-integer quantization of $Q_B$ for systems with local inversion or local chiral symmetries to any rational value. Quite remarkably, this rational quantization remains valid even in the presence of short-ranged electron-electron interactions as well as static random disorder (breaking translational invariance). This striking stability can be traced back to the fact that local perturbations in insulators induce only local charge redistributions. We establish this result with complementary methods including density matrix renormalization group calculations, bosonization methods, and exact solutions for particular lattice models. Furthermore, for the special case of half-filling $\barρ=\frac{1}{2}$, we present explicit results in single-channel and nearest-neighbor hopping models and identify Weyl semimetal physics at gap closing points. Our general framework also allows us to shed new light on the well-known rational quantization of soliton charges at domain walls.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源