论文标题
三维随机生态系统动力学的分类
A classification of the dynamics of three-dimensional stochastic ecological systems
论文作者
论文摘要
动态系统的长期行为的分类是数学中的基本问题。对于确定性和随机动力学的特定模型类别都可以验证Palis的猜想:长期行为是由有限数量的固定分布确定的。在本文中,我们考虑了相互作用物种的随机模型的分类问题。对于一大批三物种,随机微分方程模型,我们证明了帕利斯猜想的变体:长期统计行为取决于有限数量的固定分布数量,并且通常可以进行三种一般类型的行为:1)接收到一个独特的平台分布,将所有物种融合到一个有限分布的独特物种,2)3个或少数几个工厂的分布,2)差异,2)3个或几个差异的分布组合。单个物种,由于岩纸剪式动态类型而引起的固定分布。此外,我们证明该分类减少了计算Lyapunov指数(外部Lyapunov指数),这些指数与稀有物种的平均每木马增长率相对应。我们的结果与确定性环境相反,即使对于三维,竞争性的Lotka - Volterra Systems,分类也是不完整的。对于这些SDE模型,我们的结果还为生态学的现代共存理论(MCT)提供了严格的基础,该理论假设外部Lyapunov指数决定了长期的生态结果。
The classification of the long-term behavior of dynamical systems is a fundamental problem in mathematics. For both deterministic and stochastic dynamics specific classes of models verify Palis' conjecture: the long-term behavior is determined by a finite number of stationary distributions. In this paper we consider the classification problem for stochastic models of interacting species. For a large class of three-species, stochastic differential equation models, we prove a variant of Palis' conjecture: the long-term statistical behavior is determined by a finite number of stationary distributions and, generically, three general types of behavior are possible: 1) convergence to a unique stationary distribution that supports all species, 2) convergence to one of a finite number of stationary distributions supporting two or fewer species, 3) convergence to convex combinations of single species, stationary distributions due to a rock-paper-scissors type of dynamic. Moreover, we prove that the classification reduces to computing Lyapunov exponents (external Lyapunov exponents) that correspond to the average per-capita growth rate of species when rare. Our results stand in contrast to the deterministic setting where the classification is incomplete even for three-dimensional, competitive Lotka--Volterra systems. For these SDE models, our results also provide a rigorous foundation for ecology's modern coexistence theory (MCT) which assumes the external Lyapunov exponents determine long-term ecological outcomes.