论文标题
在Shimura曲线的三乘积和巨大的对角线循环I上提高算术水平:
Arithmetic level raising on triple product of Shimura curves and Gross-Schoen Diagonal cycles I: Ramified case
论文作者
论文摘要
在本文中,我们研究了Shimura曲线的三重产物,在降低不良的位置上研究了三重产物。我们将Abel-Jacobi Map下的对角线周期的图像与某些时期的积分相关联,该积分是通过升级的一致性来控制Garrett-Rankin型Triple Tripe Triple Tripe Triple Tripe Triple Tripe $ l $ function的中心临界值。作为一个应用程序,我们证明某些排名$ 0 $ $ 0 $ bloch-kato猜想的对称立方体动机$ 2 $模块化表格。
In this article we study the Gross-Schoen diagonal cycle on a triple product of Shimura curves at a place of bad reduction. We relate the image of the diagonal cycle under the Abel-Jacobi map to certain period integral that governs the central critical value of the Garrett-Rankin type triple product $L$-function via level raising congruences. As an application we prove certain rank $0$ case of the Bloch-Kato conjecture for the symmetric cube motive of a weight $2$ modular form.