论文标题
动态模型类型建议的多标签学习建议
Multi-label learning for dynamic model type recommendation
论文作者
论文摘要
动态选择技术旨在选择每个测试样本周围的本地专家,特别是用于执行其分类。尽管在本地范围上生成分类器可能会使在本地竞争者(在线本地池(OLP)技术中)更容易列出本地胜任的范围,但使用相同的基本分类器模型在不均匀的分布中使用相同的基础分类器模型可能会限制本地能力水平,因为每个区域可能具有一个数据分布,使一个模型比其他模型都有帮助。因此,我们在这项工作中提出了与OLP技术无关的动态基础分类器模型建议,该建议使用有关模型投资组合在不同问题样本上的行为的信息,以每种情况方式推荐其中一个(或几个)。我们提出的框架构建了一个多标签元分类器,负责根据每个测试样本的区域的局部数据复杂性,推荐一组相关模型类型。然后,OLP技术产生一个本地池,该模型产生了元分类器的最高概率得分。实验结果表明,不同的数据分布在局部范围上有利于不同的模型类型。此外,根据理想模型类型选择器的性能,可以观察到为每个测试实例选择相关模型类型有明显的优势。总体而言,提出的模型类型推荐系统在具有固定基本分类器模型的原始OLP上产生了统计上相似的性能。鉴于该方法的新颖性以及所提出的框架与理想选择器之间的性能差距,我们将其视为有希望的研究方向。可在github.com/marianaasouza/dynamic-model-recommender上获得代码。
Dynamic selection techniques aim at selecting the local experts around each test sample in particular for performing its classification. While generating the classifier on a local scope may make it easier for singling out the locally competent ones, as in the online local pool (OLP) technique, using the same base-classifier model in uneven distributions may restrict the local level of competence, since each region may have a data distribution that favors one model over the others. Thus, we propose in this work a problem-independent dynamic base-classifier model recommendation for the OLP technique, which uses information regarding the behavior of a portfolio of models over the samples of different problems to recommend one (or several) of them on a per-instance manner. Our proposed framework builds a multi-label meta-classifier responsible for recommending a set of relevant model types based on the local data complexity of the region surrounding each test sample. The OLP technique then produces a local pool with the model that yields the highest probability score of the meta-classifier. Experimental results show that different data distributions favored different model types on a local scope. Moreover, based on the performance of an ideal model type selector, it was observed that there is a clear advantage in choosing a relevant model type for each test instance. Overall, the proposed model type recommender system yielded a statistically similar performance to the original OLP with fixed base-classifier model. Given the novelty of the approach and the gap in performance between the proposed framework and the ideal selector, we regard this as a promising research direction. Code available at github.com/marianaasouza/dynamic-model-recommender.