论文标题
球形(k,k) - 设计的线性编程边界
Linear programming bounds for spherical (k,k)-designs
论文作者
论文摘要
我们为球形$(k,k)$设计提供了一般线性编程范围。这包括最小基数和最小能量和最大能量的下限和上限的下限。作为应用程序,我们获得了Levenshtein意义上的通用界限,以最小的(k,k)$设计用于固定尺寸和$ k $的最小基数,以及相应的最佳结果。我们还讨论了获得通用界限的例子和可能性。
We derive general linear programming bounds for spherical $(k,k)$-designs. This includes lower bounds for the minimum cardinality and lower and upper bounds for minimum and maximum energy, respectively. As applications we obtain a universal bound in sense of Levenshtein for the minimum possible cardinality of a $(k,k)$ design for fixed dimension and $k$ and corresponding optimality result. We also discuss examples and possibilities for attaining the universal bound.