论文标题
没有优化过程的本地隐藏变量值
Local hidden variable values without optimization procedures
论文作者
论文摘要
计算铃不平等的局部隐藏变量(LHV)值的问题在量子非局部性研究中起着核心作用。特别是,这个问题是表征给定情况的LHV多元室的第一步。在这项工作中,我们建立了两分钟不平等的LHV值与矩阵过剩的数学概念之间的关系。受到过度发展理论的启发,我们得出了几个直接影响量子非局部性领域的结果。我们显示了可以准确计算LHV值的双分钟不平等的无限家族,而无需解决任何数量的测量设置。我们还发现大量测量设置的紧张铃铛不平等现象。
The problem of computing the local hidden variable (LHV) value of a Bell inequality plays a central role in the study of quantum nonlocality. In particular, this problem is the first step towards characterizing the LHV polytope of a given scenario. In this work, we establish a relation between the LHV value of bipartite Bell inequalities and the mathematical notion of excess of a matrix. Inspired by the well developed theory of excess, we derive several results that directly impact the field of quantum nonlocality. We show infinite families of bipartite Bell inequalities for which the LHV value can be computed exactly, without needing to solve any optimization problem, for any number of measurement settings. We also find tight Bell inequalities for a large number of measurement settings.